
The results also indicate extraordinary sensitivity to node- 
point distribution, especially near the wall, and suggest that 
considerable improvement in accuracy, regardless of solu- 
tioa method. would accrue if an “optimal” distribution 4 
could be found. In this respect, the authors have developed a 
new method for two-point boundary value problems [8] 
which shows promise for marching problems as well. 
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INTRODUCTION 

LOCK et al. [ 1 J have presented results for the periodic freezing 
and melting of water in an essentially und~ension~ car- 
tesian arrangement wherein the temperature at the plane 
x = 0 varied in an approximately sinusoidal manner. with 
the mean value being the fusion temperature. The system 
initially was liquid so that freezing occurred in the first 
half period, with melting in the second half period, and the 
two hour period was executed successively thereafter. Figure 
I shows by points some of the results in terms of the depth 
in centimeters and the time in hours. with the points being 
taken from the first. second and fourth freeze and the first 
and third melt. Lock et al. showed that a good degree of 
correspondence was achieved both by approximate analysis 
and numerical solution of the conduction equation for the 
developing phase; the temperature in the existing phase 
being the fusion value. The analytic soiution is not easy to 
evaluate and the numerical sotution appears to have been 
prodigaf of computer time. 

In the water--ice system, the latent beat of fusion is large 
enough so that when the surface temperature is not far from 

the saturation value then the thermal capacity effecti in 
the solid can be ignored (low Stephan number). Then the 
solution [Z] oftbe problem involves conduction effects alone 
and is quite simple. Conversely, test8 with water cannot 
really verify the degree to which a theory adequately accountS 
for the thermal capacity effects unless the surface temperature 
amplitude is made very large. 

It is the present purpose to show that the simple theory 
adequately predicts the experimental features of Lock’s 
results to the extent that the more compiieated analysis does 
so. Lock has, in fact, afready done this in a prior reference 
[3}. Also, there is examined his suggestion that some of the 
difference between theory and experiment is ascribable to 
the effect of convection as that has been indicated by the 
melting experiments of Yen [4]. This consideration shows 
that while the convective effect mobabtv did exist and is in 
the direction required, it is b&e@ d&ernibJe in terms Of 

the results of the Lock experiments. General&. however, 
the effect is important and should be considered in melting 
problems. 
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FYG. 1. Depths of freezing and melting Curves are predie- 
t&as: & freezing; 3, metting; D, mehing with convection; 
C, critical depth for onset of convection. L, and L, are the 
terminal values for mehing and freezing as predicted in [il. 

SIMPLE THEORY 

The neglect of the thermal capacity of the advancing 
phase and the assumption of saturation temperature for 
the other phase yields the simple enera balance that detines 
the rate of advance of the phase interface. Taking L as the 
heat of fusion per unit volume and k as the thermal conduc- 
tivity and the fusion temperature as T, 

dx klTo - T,\ 
-=--. 
dt L x 

(1) 

Integration is simple for any kind of variation of the surface 
temperature, 7’& but for the periodic case only positive 
values of (T, - T,) can be considered because the advance 
of,the developing phase can only be positjve. This is true 
also of the analyses of [l] and because of this the equilibrium 
thickness of the frozen layer is analytically unavailable. For 
the per&die case, in which To - TS = A sin o.~, the rate of 
growth given by equation (I) is 

2kA 
x = -by (1 - cos wt) 0 c: Wf < rc. (2) 

For freezing of water L/2k = 7.10 h°C/cmz and for melting 
L/2k = 1.92 h”C/cm2. The experimental temperature varia- 
tion was f0 sin at, “C, with the time in hours Curve A of 

Fig. 1 represents equation (2) for ice; it represents the first 
and ensuing Reezingx and begins at the half period time. 
Curve B represeats equation (2) for water and represents the 

first and ensuing meltings; the first melting takes place a 
haIf period after the fist freezing initiates the period sca)e. 

B&iaBy the region n > 0 is all liquid at the freezing tem- 
perature and, with the surface temperature diminishing 
initiaBy, freezing takes place according to Curve A untif 
after a half period the surface temperature returns to the 
freezing value. The predicted thickness there is greater than 
the measured value shown by the circles. There is no explana- 
tion for the 7 per cent error in predicted thickness at this point 
After this half period. when melting has already begun at 
2; = 0, there is a reduction in depth of the lower ice interface. 
This is also unexplained. 

The melting that begins when the surface temperature 
rises above the freezing value is specified by Curve B, which 
terminates at the half period, when the surface temperature 
returns to the freezing value. Neglecting thermal capacity 
effects, this position of the melting front is then stable at this 
value; a dashed extension of Curve B indicates this; this 
depth defines the “active zone.” For the ensuing freezing 
cycle Curve A really terminates at this depth, at time t,. 
For time t, *: t c 120 min, the prediction according to 
equation (1) ought to be continued with the depth of the 
ice layer from the previous period as the initial condition. 
Thii leads to a continuous thickening of the fewer boundary 
of the ice, at a rate decreasing as the thickness increases. This 
aspect does not conform to the implied thickness of this layer, 
which [I] indicates to have remained at the value shown by 
the last circle on Fig. 1. 

Figure 1 demonstrates that the simple theory explains the 
observed performance in the active zone as adequately as 
does the more comphcated theory of [If. ft was indicated 
there that the slightly greater depth of the active zone that 
what is predicted might be due to the convective effects in the 
melting process that have been demonstrated by Yen [4]. 
Even though such effects are indeed small for Lock’s experi- 
mental conditions, it is appropriate and interesting to 
analyze further Yen’s results to obtain a prediction in which 
convective effects are inchtded. 

CONVECTWE EFFECTS IN THE LIQUID LAYER 

With the distance x measured vertically downward, as in 
Lock’s experiments, the layer of water just above the ice, in 
which the temperatures are below &‘?C, contains &rid in which 
the density increases with height. Instabihty can occur and 
a convection pattern can be established in this region, and 
for a fluid with a uniform coefficient of expansion, b” the 
onset of such motions is expected at a Rayleigh number, 
(g/3dTP/vct) of about 1200. With water, /3 varies greatly in 
the temperature range that is involved and the simplest 
hypothesis is to take &IT as 

T 

s ;$dT; 

0 
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where u is the specific volume of the water. Then. retaining 

the critical Rayleigh number at 1200, 6 can be evaluated for 

temperatures in the range considered. This is done for 

0 < T < 6°C for at 6°C BdT attains its maximum value; it 

decreases for higher temperatures. If the temperature at 

x = 0 is 6°C or less, then unstability is expected if x > 6. If 

the surface temperature exceeds 6°C then instability may 

develop in the lower region of the liquid layer where T < 6°C. 

x x (0) 
I I I I I 0 

0 5 IO 15 20 25 

To* “C 

FIG. 2. Critical layer thickness and convective growth for 
water. Part (a) shows the critical thickness: points are the 

estimates of [4]. Part (b) illustrates equation (4). 

Then 6 = 6/T, x, where T, is in “C. In this way critical depths 

x,, can be evaluated in terms of T,; they are shown by the 

curve on Fig. 2. Yen measured depths of melt at which de- 

partures from equation (1) occurred in a system in which T, 

was constant and the points on Fig 2 are some of these values. 

They support the prediction. Yen also measured the times at 

which these depths occurred and those times do not conform 

to those predicted by equation (1). always being too large. 

There is an implication that in those transient experiments 

the surface temperature was not truly a step in time but 

actually rose a bit more slowly. This discrepancy. however. 

does not invalidate the conclusions to bc drawn from Fig. 2. 

which considers conditions only at the time at which the 

liquid layer thickness x,, existed. 

The dashed Curve C on Fig. 1 gives these critical depths 
for Lock’s experiments as obtained from the curve of Fig. 2. 

Instability is predicted at 43 min after the beginning of 

melting. 
Once the convective layer exists, the rate of advance of 

the melt is no longer given by equation (1). but it is now 

controlled by the heat transfer coefficient for the convective 

layer and the temperature difference that exists across it. 

Ldx h 
T 

kdt k 
0 < T < 6’C. 

When T > 6 there is a layer of stable water above the con- 

vective region and the remainder of the temperature rise 

occurs across it by conduction. 

Experiments on horizontal layers of expansive fluids 

heated from below reveal that ha/k - [g/?dTd3/va]“. where 

n = 0.25 for Ra < 10’ and n = 030 for Ra > 105. Since 

equation (3) usually must be integrated numerically, the 

use of the correct formulations for h/k is involved but not 

difhcult. Here, however, there is used the simplification 

proposed by Yen, wherein his results appear to agree ade- 

quately with n = 3, so that h/k becomes independent of 6. 

He specifies the proportionality factor of 008. though here. 

to obtain a better approximation in the low Rayleigh number 

range, @lo is used. Equation (3) then becomes 

Figure 2 shows dx/dt so evaluated. For surface temperatures 

greater than 6°C dx/dt is the same as it is for 6°C. For 

Lock’s experimental conditions, the numerical integration 

of equation (4) onward from the time at which the critical 

depth is assumed gives Curve D of Fig. 1. The melting depth 

is only slightly increased by the convection which is indi- 

cated to exist for the period 43 < 4 < 60 min. while the 

surface temperature is in the range 7.8 > 7’,, > 0. This 

agrees with the trend of Lock’s data. 

CONCLUSION 

The simple theory of freezing or melting is adequate to 

represent the periodic freezing and melting as measured by 

Lock. The effect of convection is small in that experiment, 

but its onset appears to conform to expectation in Yen’s 

experiments and those support the method used to include 

convective effects in the prediction for Lock’s experiments. 
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